POLYPROPYLEN (PP)

TDS pour Lisa X

Fiche technique du matériau

Matériau à base de polypropylène offrant de bonnes propriétés mécaniques. Idéal pour le prototypage de pièces en PP, ainsi que pour la production de pièces fonctionnelles nécessitant une résistance chimique, une soudabilité et une ductilité élevées.

Compatible avec:

CARACTÉRISTIQUES:

- Grande résistance aux produits chimiques¹
- · Faible densité permettant la flottabilité
- Recyclabilité
- Convient parfaitement aux systèmes pneumatiques
- Soudabilité avec d'autres pièces en polypropylène (PP)

APPLICATIONS:

- L'industrie automobile, tels que réservoirs, tuyauterie, boîtiers
- Producteurs de pièces en plastique, intégrant le PP moulé par injection
- Laboratoires (outils chimiques, outillage chimique sur mesure, par exemple des supports ou des récipients)
- Production en faible volume de pièces soumises à de faibles contraintes
- Prototypage général de pièces en polypropylène (PP)

Informations générales			Méthode d'essai
Logiciel	Sinterit Studio Advanced	-	
Azote nécessaire	Non	-	
Couleur	Gris	-	interne
Taux de rafraîchissement du matériau²	50	%	interne
Densité d' impression	0.9	g/cm³	PN-EN ISO 845:2010
Densité apparenté	380	kg/m³	PN-EN ISO 60:2010
Absorption d'eau de l'impression	0.6	%	PN-EN ISO 62:2008
Taille des particules	30-110	μm	ISO 13320
Propriétés mécaniques			Méthode d'essai
Résistance à la traction (sur l'axe X)	19.3	MPa	PN-EN ISO 527-1:2012
Module de tension (sur l'axe X)	824	MPa	PN-EN ISO 527-1:2012
Allongement à la rupture (sur l'axe X)	44.4	%	PN-EN ISO 527-1:2012
Résistance à la flexion (sur l'axe X)	25.6	MPa	PN-EN ISO 178:2019
Module de flexion (sur l'axe X)	666	MPa	PN-EN ISO 178:2019
Résistance aux chocs X (Charpy - Non entaillé)	30	kJ/m²	PN-EN ISO 179-1:2010
Dureté sur échelle Shore type D	50		PN-EN ISO 868:2005
Propriétés thermiques			Méthode d'essai
Point de fusion	135	°C	PN-EN ISO 11357
Test de déflexion thermique (HDT) A (sur l'axe X)	50	°C	PN-EN ISO 75-2:2013-06

Les informations fournies dans ce document sont des valeurs moyennes à titre de référence et de comparaison uniquement. Tous les tests ont été effectués avec des échantillons d'impression de Lisa PRO imprimés à partir de la poudre fraîche. Les paramètres présentés dans cette spécification sont susceptibles d'être modifiés sans préavis. Les caractéristiques finales de la pièce peuvent varier en fonction de la conception de la pièce imprimée, de l'orientation de l'impression et de la manutention des matériaux. Tous les essais mécaniques ont été effectués sur des échantillons conditionnés selon les normes ISO à (23 ± 2) °C et (50 ± 5) % h. r.

Des données complètes sur la résistance chimique dans différents milieux sont disponibles sur demande. Le taux de rafraîchissement (Refresh ratio) est la quantité de poudre fraîche qui est ajoutée après l'impression avec doit être mélangé avec un matériau non fritté.